Objective: Identify and develop solutions for technical, policy, security, cultural, and analytic challenges to using enterprise architectures for machine learning.

Design Criteria
- **Modular:** Promotes incremental scientific development that manages technical debt in the complex system.
- **Secure:** Provides system-level features for common services to support legal, compliance, security, oversight, and counter intelligence considerations.
- **Robust:** Builds mechanisms for model-driven adaptability through confidence and accuracy related triggers.

Machine Learning Challenges in the IC
Ad-hoc approach creates challenges to:
- **Training Data:** Where did the data come from for initial labeling and training? How do we get more to update training?
- **Labeling:** How was the data labeled? By whom? How can others use these labels?
- **Model Validation:** How to ensure continued system integrity and model confidence, not just at initial build but throughout an extended lifecycle?
- **Model Updates:** How to account for both data drift and evolving technical capabilities?
- **Security and Compliance:** What components of data, labels, models need traceability and assurance?

Labeled Data Registry
Reliable Storage for Training / Validation Data
- Modular security and data API
- Many labels from many systems – annotation and instrumentation

Attribute Based Sampling
Repeatable, compliant and intentional data collection service
- Multi-purpose Selection:
 - Ground truth and validation
- Sampling Framework:
 - Enterprise compliance filter
 - Sampling methods and rates
- **Current focus:** active learning to optimize human effort in labeling

Labeling Service
Common, secure, compliant service to annotate data in an analytic workflow
- **Front-End Interface:**
 - Create new labels
 - Assess model results
- **Future Considerations:**
 - Gamification
 - Inter-rater reliability
 - Labeling context
 - Semi-supervised approaches
- **Current focus:** rapid, efficient labeling

Model Registry
Versioning and change management service for system components
- Domain relevant reliability and validity assessments
- Model metadata management and transparency
- Enhance trust in model development and sustainment through transparency

Validation Service
Service to maximize analytic rigor between model builders and customers
- **Feedback on Model Performance:**
 - Impacts decision making for the lifespan of machine models
 - Enables assessments of the drift of the data’s feature space for retraining
- **Feedback on Compute Use:**
 - Volume over time
 - Compute resources consumed
- **Current focus:** Data pipeline unit tests; hyperparameter optimization.

Use Cases
- **Machine Translation**
 - Machine Learning project to develop models for North Korean text translation
 - Used scaffolding to for model assessments and for reliability measures

- **Hyperparameter Optimization**
 - Research partnership with Dr. Tim Menzies and Suvadeep Majumder
 - Developing sampling methods to support active learning
 - Developing hyperparameter optimization routines to support validation

- **News Source Veracity**
 - Machine Learning project to infer international news source veracity
 - Used scaffolding to generate and manage ground truth labeled data